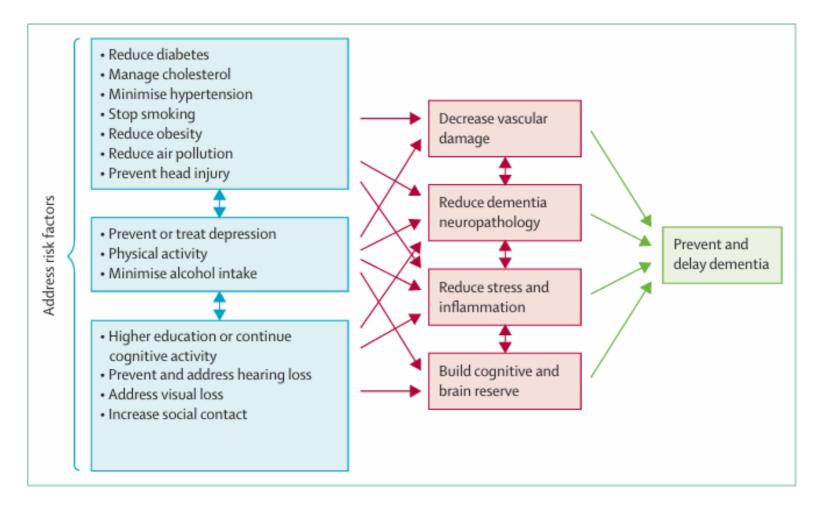


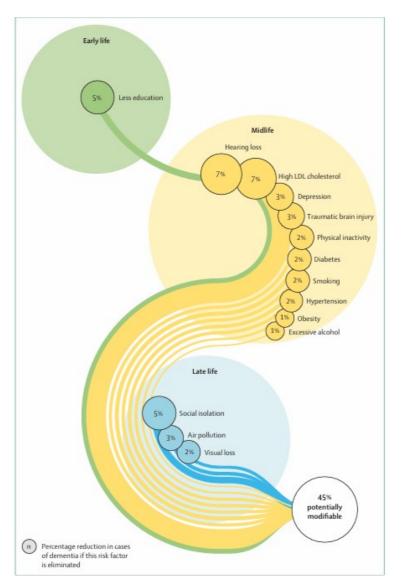
18 – 19 novembre 2024 XVII Convegno I CENTRI PER I DISTURBI COGNITIVI E LE DEMENZE E LA GESTIONE INTEGRATA DELLA DEMENZA


Qualità della dieta, consumo di alimenti ultraprocessati e rischio di deterioramento cognitivo e malattie neurodegenerative

Licia Iacoviello, MD, PhD

Reserach Unit of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Pozzilli (IS), Italy.

Department of Medicine and Surgery, LUM University, Casamassima (Bari), Italy.


Modifiable risk factors in dementia

Specific actions recommended for dementia prevention 2024 report of the Lancet standing Commission

- Ensure good quality education is available for all and encourage cognitively stimulating activities in midlife to protect cognition
- Make hearing aids accessible for people with hearing loss and decrease harmful noise exposure to reduce hearing loss
- Treat depression effectively
- Encourage use of helmets and head protection in contact sports and on bicycles
- Encourage exercise because people who participate in sport and exercise are less likely to develop demential
- Reduce cigarette smoking through education, price control, and preventing smoking in public places and make smoking cessation advice accessible
- Prevent or reduce hypertension and maintain systolic blood pressure of 130 mm Hg or less from age 40 years
- Detect and treat high LDL cholesterol from midlife
- Maintain a healthy weight and treat obesity as early as possible, which also helps to prevent diabetes
- Reduce high alcohol consumption through price control and increased awareness of levels and risks of overconsumption
- Prioritise age-friendly and supportive community environments and housing and reduce social isolation by facilitating participation in activities and living with others
- Make screening and treatment for vision loss accessible for all
- Reduce exposure to air pollution

Population attributable fraction of potentially modifiable risk factors for dementia

2024 report of the Lancet standing Commission

Major environmental risk factors for dementia and Alzheimer disease

WHO 2019: Conditional racommendation for Mediterranean diet

TO PREVENT

- high blood pressure (hypertension)
- high blood sugar (diabetes)
- being overweight or obese
- smoking
- drinking too much alcohol
- being physically inactive
- being socially isolated
- depression

TO MANAGE

- Stay physically active.
- Eat healthily.
- Stop smoking and drinking alcohol.
- Get regular check-ups with your doctor.
- Keep up your hobbies and do things that you enjoy.
- Try new ways to keep your mind active.
- Spend time with friends and family and engage in community life.

Source: WHO, 2023. Available at: https://www.who.int/news-room/fact-sheets/detail/dementia


Can diet help prevent cognitive impairment and dementia?

About the diet of the Italians in the Fifties

"A hearty dish of beans and short lengths of macaroni (pasta e fagioli); lots of bread (never served with any kind of spread); great quantities of fresh vegetables; a modest portion of meat or fish (perhaps twice a week); wine; always fresh fruits for dessert".

adapted from: Ancel and Margaret Keys. HOW TO EAT WELL AND STAY WELL: THE MEDITERRANEAN WANew York: Doubleday; 1975.

"My concern about diet as a public health problem began in the early 1950s in Naples, where we observed very low incidences of coronary heart disease associated with what we later came to call the "good Mediterranean diet".

The heart of this diet is mainly vegetarian, and differs from American and northern European diets in that it is much lower in meat and dairy products and uses fruit for dessert. These observations led to our subsequent research in the Seven Countries Study, in which we demonstrated that saturated fat is the major dietary villain[...] Our challenge is to persuade children to tell their parents to eat as Mediterraneans do" (Keys A. Am J Clin Nutr. 1995;61:1321S-1323S).

A Mediterranean Lifestyle

Mediterranean diet pyramid: a lifestyle for today guidelines for adult population

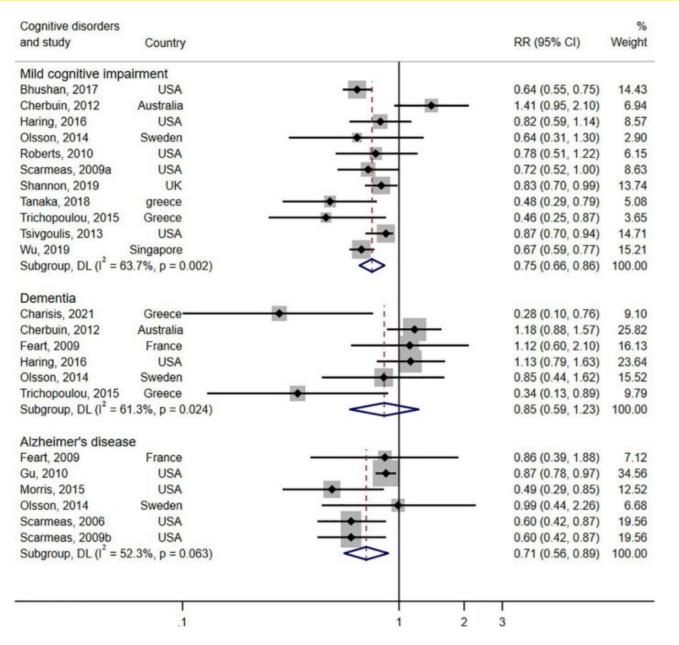
Serving size based on frugality and local habits

Wine in moderation and respecting social beliefs

Biodiversity Seasonality Traditional local food Culinary activities Conviviality Adequate rest

2010 edition

Conviviality


and eco-friendly products

Culinary activities

s = Serving

Mediterranean Diet and cognitive health: a meta-analysis of prospective studies

Mild cognitive impairment:

RR= 0.75 (95%CI 0.66-0.86) for high vs. low MD

Dementia:

RR= 0.85 (95%CI 0.59-0.23) for high vs. low MD

Alzheimer disease:

RR= 0.71 (95%CI 0.56-0.89) for high vs. low MD

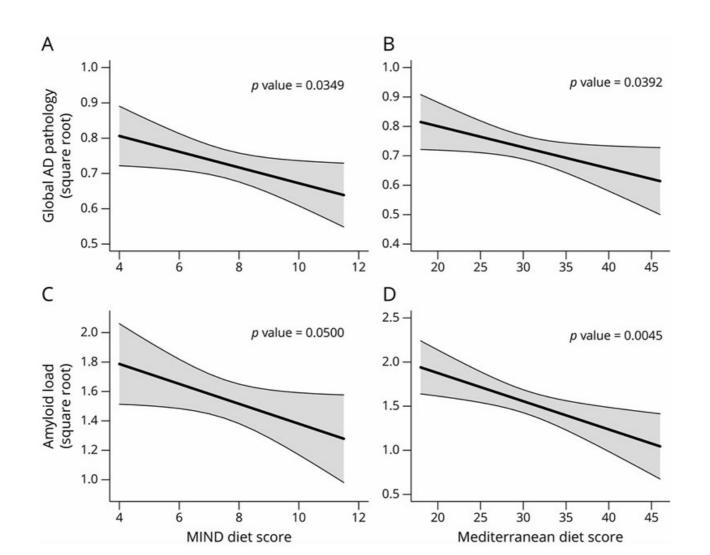
MIND Diet and dementia risk: a meta-analysis of prospective studies

The MIND diet emphasizes natural plant-based foods, limited intake of animal foods and foods high in saturated fat, and uniquely encourages consumption of berries and green leafy vegetables rich in vitamins and antioxidants

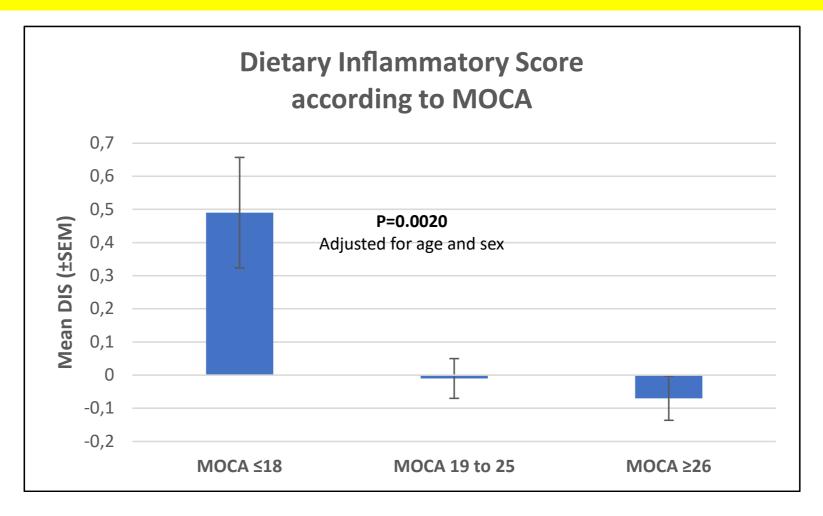
Source	Cohort	No. of cases/ total No. (%)	HR (95% CI)	Lower risk		Weight, %
Vu et al, ²⁶ 2022	CHAP (Black individuals)	109/1503 (7.2)	1.48 (0.51-4.27)	-	•	→ 0.6
Vu et al, ²⁶ 2022	CHAP (White individuals)	67/946 (7.1)	1.23 (0.47-3.18)		•	0.8
Vu et al, ²⁶ 2022	WHI-MS	951/5308 (17.9)	0.80 (0.72-0.89)		į	20.5
Vu et al, ²⁶ 2022	MAP	222/725 (30.6)	0.63 (0.42-0.92)	-	-	3.9
Thomas et al, ²⁸ 2022	3C-Bordeaux	356/1412 (25.2)	0.73 (0.55-0.97)	-	_	7.0
de Crom et al, ²¹ 2022	RS (baseline I)	1188/5375 (22.1)	0.98 (0.86-1.12)	-	•	18.4
de Crom et al, ²¹ 2022	RS (baseline II)	248/2861 (8.7)	0.74 (0.64-0.89)	-		15.4
Zhang et al, 27 2022	UKB	1363/187783 (0.7)	0.87 (0.76-0.99)	-	H	17.1
Present study	WII	220/8358 (2.6)	0.96 (0.66-1.38)	-	_	4.4
Present study	HRS	338/6758 (5.0)	0.83 (0.63-1.09)		-	7.3
Present study	FOS	217/3020 (7.2)	0.69 (0.48-0.99)	-	-	4.7
Random-effects model			0.83 (0.76-0.90)		1	100
Heterogeneity: $I^2 = 35\%$; τ	² =0.0064 (<i>P</i> =.12)		0.	25 0.5 HR (1 2 95% CI)	4

[▶] BMC Med. 2023 Mar 14;21:81. doi: 10.1186/s12916-023-02772-3 🗷

Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the UK Biobank prospective cohort study


Oliver M Shannon ^{1,#}, Janice M Ranson ^{2,#}, Sarah Gregory ³, Helen Macpherson ⁴, Catherine Milte ⁴, Marleen

Lentjes ⁵, Angela Mulligan ⁶, Claire McEvoy, ⁷, Alex Griffiths ⁸, Jamie Matu ⁸, Tom R Hill ¹, Ashley Adamson ¹, Mario


Siervo ⁹, Anne Marie Minihane ^{10,11}, Graciela Muniz-Tererra ^{3,12}, Craig Ritchie ³, John C Mathers ^{1, M}, David J

Llewellyn ^{2,13,#}, Emma Stevenson ^{1,#}

Association Between MINDDiet and MedDiet with Global AD Pathology and Amyloid Load in Autopsied participants of the Rush Memory and Aging Project

Dietary inflammatory score and cognitive performance in the Moli-sani study

Multinomial Logistic Regression for MoCA categories in Relation to Dietary Inflammatory Score (DIS), in whole population (N=2,474) and according to PHQ-9

	MoCA≥26	MoCA 18 to 26	MoCA ≤18		
	Referent	OR (95% CI)	OR (95% CI)	P for difference	
MoCA vs DIS (x 1-SD)					
Whole population	-1-	1.01 (0.92 to 1.10)	1.33 (1.11 to 1.60)		
PHQ-9 <10	-1-	0.97 (0.88 to 1.06)	1.21 (0.99 to 1.47)	0.0014	
PHQ-9 ≥10	-1-	1.52 (1.08 to 2.15)	2.36 (1.36 to 4.11)		

SD stands for Standard Deviation and PHQ-9 for Patient Health Questionnaire-9

A PHQ-9 score of ≥10 indicates the presence of mild to severe depressive symptoms

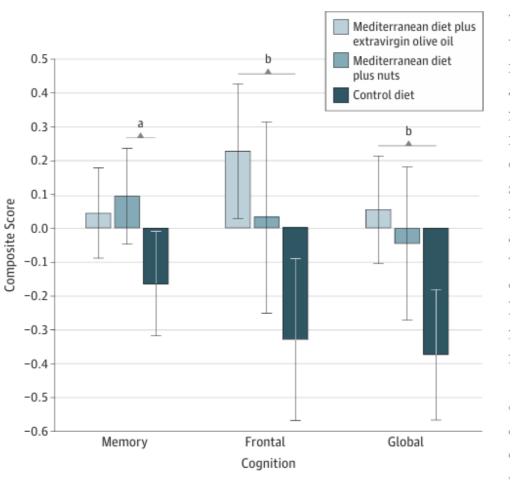
Odds ratios adjusted for age, sex, housing status, total calories intake, history of cardiovascular disease, malignant tumours, diabetic therapy, lipid-lowering therapy, antihypertensive drug use, and drug therapies targeting the central nervous system

Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial

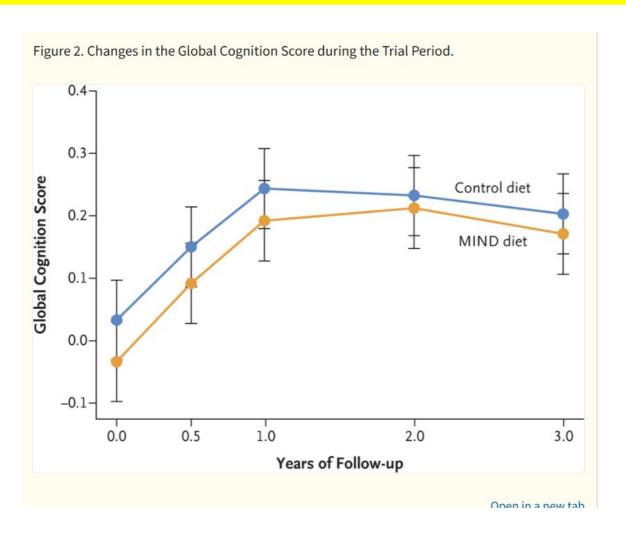
522 participants at high vascular risk

Table 4 Multivariable-adjusted means after a 61/2-year follow-up and differences versus control (95% CIs) in each intervention group

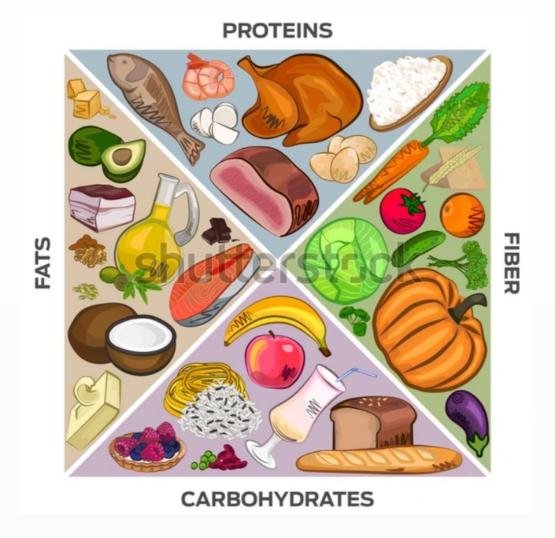
	MedDiet+EVOO (n=224)		MedDiet+Nuts (n=166)	Control (low-fat diet) (n=132)	
	Mean (95% CI)	p Value (vs control)	Mean (95% CI)	p Value (vs control)	Mean (95% CI)
MMSE	27.73 (27.27 to 28.19)		27.68 (27.20 to 28.16)		27.11 (26.61 to 27.61)
Adjusted diff. versus control (95% CI)	+0.62 (+0.18 to +1.05)	0.005	+0.57 (+0.11 to +1.03)	0.015	0 (reference)
CDT	5.31 (4.98-5.64)		5.13 (4.78-5.47)		4.80 (4.44-5.16)
Adjusted diff. versus control (95% CI)	+0.51 (+0.20 to +0.82)	0.001	+0.33 (+0.003 to +0.67)	0.048	0 (reference)


General Linear Models. The PREDIMED-NAVARRA trial.

CDT, Clock Drawing Test; EVOO, extra virgin olive oil; MedDiet, Mediterranean diet; MMSE, Mini-Mental State Examination.

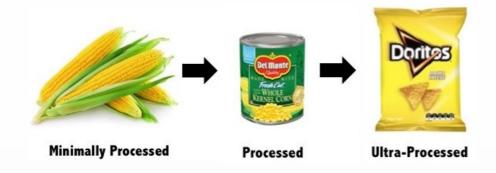

Adjusted for sex, age, education, family history of cognitive impairment or dementia, *ApoE4* genotype, hypertension, dyslipidaemia, diabetes, smoking status, alcohol intake, body mass index, physical activity and total energy intake.

An intervention with MedDiet supplemented with either EVOO or mixed nuts was associated with a better global cognitive performance after 6.5 years of follow-up compared with a low-fat control group


Changes in Cognitive Function Measured With Composites by Intervention Group in the PrediMed Trial

Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons

Beyond the 'nutrient gate': the issue of food processing



- For decades, the effect of diet on health has been almost exclusively considered from a nutrient based perspective, leading to recommendations of reducing, e.g., sugar, salt and fat
- The degree of processing and formulation of foods has been largely minimized
- The potential health effect of food processing and food formulation, beyond their food ingredients, nutrient composition, and energy content, is now being widely researched

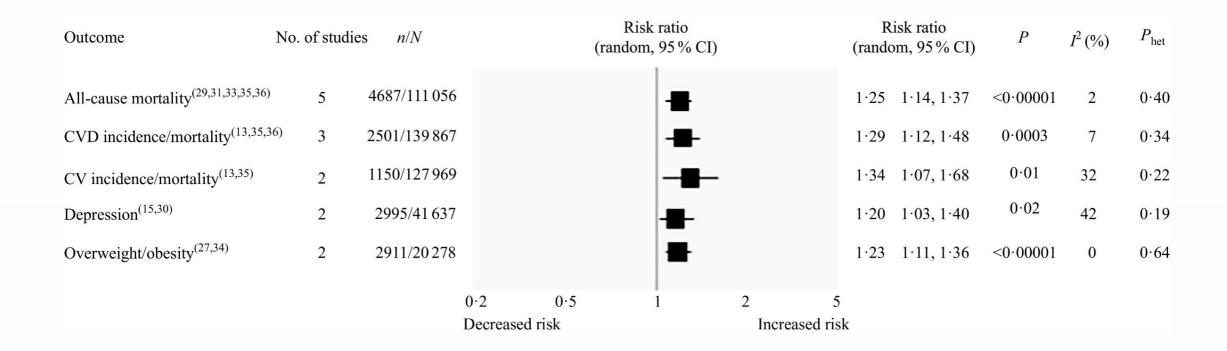
The Nova classification

Unprocessed or minimally processed foods	Processed culinary ingredients	Processed foods	Ultra-processed foods
Foods which did not undergo processing or underwent minimal processing technics, such as fractioning, grinding, pasteurization and others.	These are obtained from minimally processed foods and used to season, cook and create culinary dishes.	These are unprocessed or minimally processed foods or culinary dishes which have been added processed culinary ingredients. They are necessarily industrialized.	These are food products derived from foods or parts of foods, being added cosmetic food additives not used in culinary.
	Salt	SARDINES	COLA
Legumes, vegetables, fruits, starchy roots and tubers, grains, nuts, beef, eggs, chicken, milk	Salt, sugar, vegetable oils, butter and other fats.	Bottled vegetables or meat in salt solution, fruits in syrup or candied, bread, cheeses, purees or pastes.	Breast milk substitutes, infant formulas, cookies, ice cream, shakes, ready-to-eat meals, soft drinks and other sugary drinks, hamburgers, nuggets.

GROUP 4. Ultra-processed food (UPF)

- The term ultra-processed food (UPF) indicates industrially manufactured ready-to-eat or ready-to-heat formulations made mostly or entirely from substances extracted from foods or derived from food constituents often containing added flavours, colours, emulsifiers and other cosmetic additives, and little or no food
- These industrial formulations are designed to maximize palatability and (over) consumption through a combination of calorie-dense ingredients and chemical additives
- Examples of typical UPF are carbonated drinks, processed meat, fruit yogurt, sweet or savoury packaged snacks, ice-cream, chocolate, candies (confectionery), mass-produced packaged breads and buns, and many others

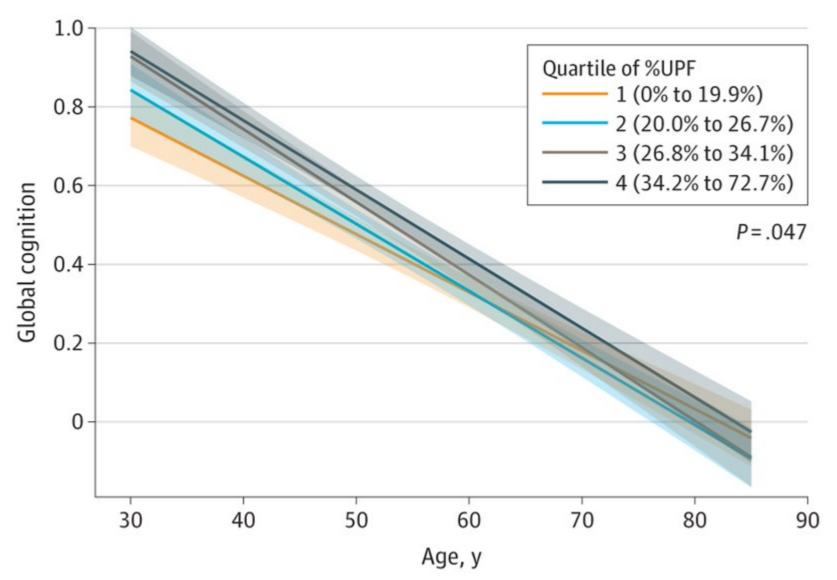
Monteiro CA et al. Public Health World Nutr 2016;7:28-38 Monteiro CA. et al. Public Health Nutr. 2009;12(5):729-731


UPF intake is on the rise globally

The proportion of food that is ultra-processed is

- 60% in the USA and in the UK
- 50% in Canada
- 42% in Australia
- 32% in Belgium
- 30% in Brasil
- 24% in Spain
- 13% in Italy (1997)
- 17% in Italy (INHES 2010-13)
- 15% in Colombia

Consumption of UPF and health status A systematic review and meta-analysis


13 prospective cohort studies; 183,491 participants; follow-up 3.5 to 19 years

Do UPFs affect brain health?

Ultra-processed Foods and Cognitive Decline: findings from the ELSA-Brasil

Exposure: UPF consumption

Outcome: Changes in cognitive performance over time evaluated by the immediate and delayed word recall, word recognition, phonemic and semantic verbal fluency tests, and Trail-Making Test B version

Follow-up: 8 years

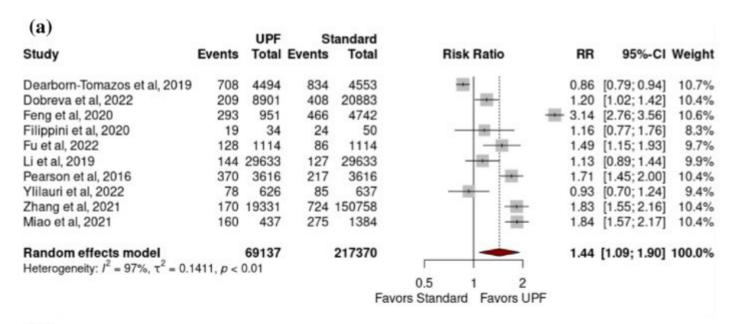
Results: Participants who reported consumption of UPF of more than 19.9% of daily calories had a 28% faster rate of global cognitive decline compared with those who reported consumption of UPF up to 19.9% of daily calories

Ultra-processed Food Consumption and Risk of Dementia in the UK Biobank

- Study sample: 72,083 participants (≥55 y) free from dementia at baseline
- Exposure: UPF intake as per Nova classification
- Outcome: All-cause dementia comprising Alzheimer disease (AD) and vascular dementia
- Follow-up: 10 years
- 87 developed AD and 119 developed vascular dementia

Risk of Alzheimer disease

HR= 1.25 (95&CI 1.14-1.37) For 10% increase in UPF


Risk of vascular dementia

HR= 1.28 (95&CI 1.06-1.55) For 10% increase in UPF

Replacing 10% of UPF weight in diet with an equivalent proportion of unprocessed or minimally processed foods was estimated to be associated with a 19% lower risk of dementia (HR 0.81; 95% CI 0.74–0.89).

Li H et al, Neurology. 2022;99(10):e1056-e1066.

Ultra-processed Foods and Risk of Dementia: a meta-analysis of observational studies

All-cause dementia

RR= 1.44 (95%CI 1.09-1.90)

For <u>high</u> vs. low UPFs consumption

(b)

Study	Events	UPF Total	S Events	tandard Total	Risk Ratio	RR	95%-CI	Weight
Dearborn-Tomazos et al, 2019	757	4541	834	4553		0.91	[0.83; 1.00]	14.4%
Dobreva et al, 2022	1261	74432		20883	-		[0.78; 0.97]	
Filippini et al, 2020	11	24	24	50 -			[0.57; 1.61]	4.6%
Fu et al, 2022	117	1114	86		1		[1.04; 1.77]	9.5%
Li et al. 2019	129	29632	127	29633	- 60		[0.80; 1.30]	
Pearson et al, 2016	297	3616		3616		1.37	[1.16; 1.62]	
Ylilauri et al, 2022	91	608	85	637			[0.85; 1.48]	9.3%
Zhang et al, 2021	796	144076	724	150758			[1.04; 1.27]	14.1%
Miao et al, 2021	118	392	275	1384		1.51	[1.26; 1.82]	11.9%
Random effects model Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0$	1300 0 -	258435		212628		1.12	[0.96; 1.31]	100.0%
110torogonomy. 7 = 05%, C = 0.0	, p <	0.01			0.75 1 1.5			
				Fav	ors Standard Favors UPF			

All-cause dementia

RR= 1.12 (95%CI 0.96-1.31)

For <u>average</u> vs. low UPFs consumption

Henney AE et al. J Neurol. 2024;271:198-210.

UPFs and multiple health outcomes: an umbrella review of meta-analyses

Lane MM et al. BMJ 2024 Feb 28:384:e077310.

Common mental disorder outcomes

OR = 1.53; 95%CI 1.43-1.63

(For high vs. low UPF intake)

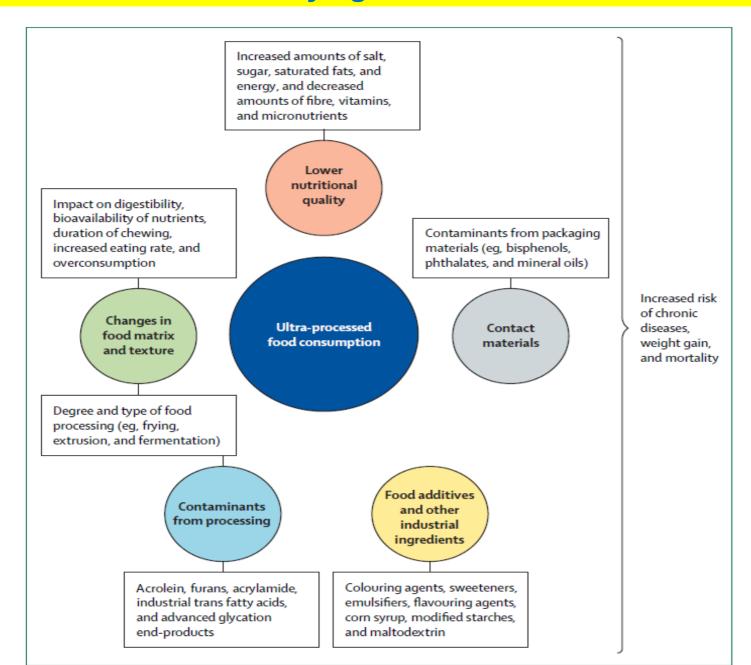
Incident depressive outcomes

OR = 1.22; 95%CI 1.16-1.28

Adverse sleep-related outcomes

OR = 1.41; 95%CI 1.24-1.61

Anxiety



OR = 1.48; 95%CI 1.37-1.59

What are the potential mechanisms linking diet to cognitive health?

Possible mechanisms underlying the associations between UPF and chronic disease

Increased inflammation

Gut dybiosis

Srour B et al. Lancet Gastroenterol Hepatol. 2022:S2468-1253(22)00169-8. Increased levels of circulating proinflammatory cytokines have been associated with cognitive decline

(Gomes Gonçalves N et al., 2023)

- Dysbiosis may lead to an inflammatory state that can promote neuroinflammation and contribute to neuropsychiatric conditions
- and cognitive decline

(Hoffman et al., 2023)

 A traditional Mediterranean Diet possibly leads to the microbiota eubiosis reestablishment and to lower subclinical inflammation

(Merra G et al., 2020 Bonaccio M et al., 2023)

Conclusions

- 1. A traditional Mediterranean Diet is reportedly associated with improved cognition and lower risk of dementia and Alzheimer disease
- 2. Ultra-processed food intake is an emerging risk factor for cognitive health
- 3. Dietary recommendations to prevent neurocognitive disorders should account for both diet quality and food processing

Department of Epidemiology and Prevention IRCCS NEUROMED, Pozzilli (IS), ITALY

Head

Licia lacoviello

Senior Staff

Giovanni de Gaetano

Maria Benedetta Donati

Chiara Cerletti

Nutritional Epidemiology

Marialaura Bonaccio

Emilia Ruggiero

Simona Esposito

Sukshma Sharma

Claudia F. Martinez

Epidemiology and Biostatistics

Augusto Di Castelnuovo

Simona Costanzo

Alessandro Gialluisi

Moli-sani Study recruitment

Mariarosaria Persichillo

Francesca Bracone

Teresa Panzera

Moli-sani Biobank

Amalia De Curtis

Sara Magnacca